
A NEW GIBBERELLIN IN THE SEED OF PHASEOLUS MULTIFLORUS

R.J. Pryce and J. MacMillan Department of Organic Chemistry The University, Bristol.

(Received in UK 20 July 1967)

In an earlier paper (1) we showed that gibberellins A_1 , A_4 , A_5 , A_6 , and A_8 could be directly identified in immature seed of <u>Phaseolus multiflorus</u> by combined gas chromatographymass spectrometry (g.c.-m.s.) of a methylated crude extract and its trimethylsilylation product. However, the peaks tentatively assigned previously (2) to gibberellin A_{13} methyl ester (I, R=CH₃) and its trimethylsilyl ether by gas chromatography (g.c.) alone were found to be those of the corresponding derivatives of an isomer of gibberellin A_{13} . We now report the isolation of this new gibberellin (II, R=H) which we name A_{17}^{*} .

Column chromatography of the total crude acid extract on celite:charcoal (2:1) has already been described (2). Fraction 55, eluted with 64% acetone in water, and shown by g.c. of a methylated aliquot to contain a high concentration of the new gibberellin, was

^{*}Gibberellin A₁₆ methyl ester has recently been isolated from <u>Gibberella</u> <u>fujikuroi</u> by R.H.B. Galt, Tetrahedron, submitted.

further purified by column chromatography on celite:silica gel (2:1) and by thin layer chromatography on silica gel with chloroform:ethyl acetate:acetic acid (15:5:1). The material, eluted from the former with 60-85% ethyl acetate in chloroform and from the latter at Rf <u>ca.</u> 0.4 to 0.6, was precipitated from ethyl acetate by petroleum ether to give gibberellin A_{17} as an amorphous solid m.p. 140-150° with a purity of 90% by g.c. analysis. The methyl ester showed a parent ion in the mass spectrum at m/e 420 with composition $C_{23}H_{32}O_7$ and was clearly a trimethyl ester from its nuclear magnetic resonance (n.m.r.) spectrum (see Table). The infrared spectrum of a chloroform solution of the trimethyl ester showed the following features: a broad hydroxyl (<u>ca</u>. 3500 cm.⁻¹); a composite carbonyl (1723 cm.⁻¹); and an exocyclic methylene (1663 and 906 cm.⁻¹). Gibberellin A_{17} was therefore a tribasic hydroxy acid, $C_{20}H_{26}O_7$.

TABLE

N.m.r. Resonances (T values) and Assignments

Acid	Methyl Ester		Intensity	Assignment
(CD3) 00	CDC1 3	с ₆ р ₅ N		
8.84	8.91	8.77	3	cu₃ - c €
6.19	6.28	5.95	1	10 - H
4.97,5.24	4.94,5.17	4.58,5.05	1,1	сн ₂ -с
-	6.36,6.41,6.46	6.43,6.43,6.52	3,3,3	сн₃ос≂о

Structure (II, R=H) is deduced for gibberellin A_{17} from the n.m.r. data shown in the Table for the acid and trimethyl ester. The revealing resonances are those of the 10-proton and the exocyclic methylene protons. As in Bamboo gibberellin (III) (3) and in gibberellin A_{13} (I, R=H), the 10-proton doublet ($J_{10,10a}$ 12 c./sec.) occurs at characteristically low field, deshielded by the 1,4a-diaxial carboxyl and aldehyde groupings (4). The significant difference in the chemical shifts of the exocyclic methylene protons, one of which shifts to even lower field in pyridine solution reveals the presence of a 7-hydroxyl group (5). The stereochemistry shown in (II, R=H) for gibberellin A_{17} is assumed by analogy and is supported by the n.m.r. evidence discussed above. Structure (II, R=H) differs from that of gibberellin A_{13} (I, R=H) only in the position of the hydroxyl group. This close relationship is reflected in the similarity of their mass spectra and in the expected and significant intensity differences, particularly of the $[M-18]^+$ peak in the methyl esters. The possible biosynthetic link between gibberellin A_{17} (II, R=H) and Bamboo gibberellin (III) is obvious and the co-occurrence of these two gibberellins in <u>P. multiflorus</u> and <u>Phyllostachys edulis</u> (Bamboo) is anticipated. The biological properties of gibberellin A_{17} are under current study and will be reported in the full paper.

It is noteworthy that the detection and isolation of gibberellin A_{17} was effected without the guidance of bioassay.

We thank the Science Research Council for a Research Studentship (to R.J.P.) and the Agricultural Research Council for financial support.

REFERENCES

- 1. J. MacMillan, R.J. Pryce, G. Eglinton, and A. McCormick, Tetrahedron Letters, 2241 (1967).
- 2. B.D. Cavell, J. MacMillan, R.J. Pryce, and A.C. Sheppard, Phytochemistry, 6, 867 (1967).
- N. Murofushi, S. Iriuchijima, N. Takahashi, S. Tamura, J. Kato, Y. Wada, E. Watanabe, and T. Aoyama, <u>Agr. Biol. Chem. (Tokyo</u>), <u>30</u>, 917 (1966).
- 4. R.H.B. Galt, J. Chem. Soc., 3143 (1965).
- 5. J.R. Hanson, J. Chem. Soc., 5036 (1965).